FNCA Mutation Breeding Project

Five Years Plan of Sub-Project on improvement of Composition or Quality in rice

Country	FY2007	FY2008	FY2009	FY2010	FY2011
Bangladesh		1) Collection of salt tolerant rice landraces from coasta	$oxed{1}$ 1) Collection of seeds from M1 plants and raising of M_2	1) Raising and evaluation of putative mutants	1) Raising and evaluation of mutants in M4
		regions.	population in the experi- mental field for screening and	in $M3$ generation in the saline soil of coastal	generation in the saline soil of coastal
		2) Determination of protein and amylose content in the	e selection.	$region \ for \ high \ protein, \ high \ amylose \ and \ high$	region.
		collected landraces.	2) Irradiation of embryogenic calli with different doses	yield.	2) Raising of M_3V_3 in the fields of saline
		3) Irradiation of seeds by different doses (250-400 Gy) of	f (20-60 Gy) of gamma rays.	2) Raising and selection of $M_1V_1\mbox{ plants}$ in	affected coastal areas for selection.
		gamma ray.	3) Maintenance and scree- ning of calli onto MS/N6	NaCl-free soil to get M_2V_2 seeds.	3) Evaluation of selected plants in the
		4) Raising of M_1 generation in the experimental field.	medium added with 0.5-1.5% NaCl for 120 days with	3) Screening and selection of $M_2V_2\ plants$ for	succeeding generations for protein content,
		5) Development of embryogenic calli from mature seeds.	periodical subculturing.	$high\ protein,\ amylose\ and\ yield\ in\ pot\ culture$	amylose content, yield and salinity
		6) stablishment of regeneration system from embryogeni	4) Regeneration of M_1V_1 plants from surviving calli on	treated with 0.5-1.5% NaCl under greenhouse	tolerance.
		calli.	NaCl-free medium.	condition.	
Indonesia	Construction of breeding materials (M2)	Purification of breeding materials (M3, M4)	1) Multiplication of seeds of pure lines (M5 lines)	1) Screening the lines for amylase contents	1) Breeding for high yielding and grain
			2) Screening the lines for amylase contents	(Cont.)	qualities of rice varieties using selected
				2) Breeding for high yielding and grain qualities $$	lines (Cont.)
				of rice varieties using selected lines	2) Writing final repoert
Korea	Color rice				
	1) Collection of breeding materials from foreign and	1) Culturing M3 plants and selection of useful mutant	M4-5 generation field trial, analyses of functional	Selection of promising lines	Local adaptability trials and registration
	native rice germplasm	2) Analysis of functional compounds: Anthocyanin	, compounds and related molecular markers, and		
	2) Irradiation of radiation (acute/chronic, gamma,	Chrisanthemin (C3G; cyanidin 3-glucoside), tocoperol	, selection		
	ion beam)	etc.			
	3) Harvesting M2 seeds				
	Amylose library				
	1) Ilpumbyeo: irradiation of gamma ray with 250	Culturing M2 plants and selection of amylose mutants	1) Culturing M3 mutant generation and reselection after	Characterization and line selection	1) Construction of mutant library with
	dose	after analysis of amylose content and seed morphology	analysis and characterization		various amylose contents
	2) Harvested M2 seed		2) Molecular analysis using amylose mutants		2) Selection of promising mutant lines for
					new variety
Japan	1) Research method :	1) Research method :	1) Research method :	1) Research method :	1) Research method :
	Use existing amylose variants	Use mutagens such as gamma-rays and ion beams	Use mutagens such as gamma-rays and ion beams	Use mutagens such as gamma-rays and ion	Evaluate amylose library under various
	2)Research Object :	2) Research Object :	2) Research Object :	beams	cultivation conditions
	Raise Koshihikari NILs relating to amylose	Screen amylose variants from primary varieties	Screen amylose variants from primary varieties	2) Research Object :	2) Research Object :
	3)Expected achievements :	3) Expected achievements :	3) Expected achievements :	Screen amylose variants from primary varieties	Evaluate amylose library
	Broadened amylose variants	Creation of amylose library	Creation of amylose library	3) Expected achievements :	3) Expected achievements :
				Creation of amylose library	Completion of amylose library
Malaysia	Irradiation of seeds of advanced lines of MR 211,	Line screening of selected mutant lines from M3-M4	Mutant confirmation in lab (PCR-based) and field condition	Yield trails of advanced mutant lines Advance	Adaptability study of selected mutant line
	MR219, and MR 256, Q74 with gamma rays	Laboratory analysis of amylose content and total	Evaluating the promising mutants for high yield and	Yield Trial of promising mutant line Quality	in several location of grainy area Local

				T			
	(re-irradiation) and ion beams Field screening of	starch content. Molecular screening with specific	quality traits (M5-M6) To screen potential mutant lines of	evaluation of advanced mutant lines for Milling	varification		
	M1-M2 populations	microsatelitemarker	MR 211, MR219, and MR 256, Q74 with low amylase and	quality, physical quality, chemical and sensory	Test/Regional trial at Farmer plot Release		
			total starch content. Starch profiling using molecular				
			techniques.				
The	1) Irradiation of seeds	1) Identification of mutants in the M_2 generation	1) Selection of mutants with improved grain quality in the	1) Multiplication of desirable mutants	Submission of desirable mutants with		
Philippines	2) Determination of radiosensitivity to gamma	2) Determination of amylose and protein content and	M_3 and later generations	2) Determination of amylose and protein	improved grain quality to the National Seed		
	radiation	other grain quality a <i>t</i> tributes	2) Determination of amylose and protein content of selected	content of selected mutants	Industry Council for registration		
	3) Growing of M ₁ generation		mutants				
Thailand	Low Phytate in Rice						
	1) Genetics studies of Low phytic acid mutants	1) Yield, Fe content and other agronomic traits	1) Continue yield, Fe content and other agronomic traits	1) Study on G x E and stability in term of Fe	1) LP mutant derived from SPR1 cultivar		
	derived from M6 of irradiated variety SPR1), RD23,	evaluation of derived LP mutant lines.	evaluation of derived LP mutant lines.	content in advance LP mutant lines performed	with high Fe bioavailability and acceptable		
	2) Generation of Mapping population for Low	2) LP molecular marker developing.	2) Screening for Low Phytate mutants combined with good	good agronomic characters and acceptable grain	cooking quality will be recommended.		
	Phytate (LP) traits.	3) Developing simplified protocol of breeding screening	grain quality (eg. Low amylase, aroma) from newly	yield.	2) LP mutants with good grain quality to be		
	3) Analysis of genes involved in phytic acid	technique for high Fe content.	generated population using MAS.	2) Analysis of Fe content and cooking quality of	continue selected in further breeding		
	biosynthesis of the generated population.	4) Generate new mutant populations (using LP		elite LP mutants.	program.		
		mutants as parents) for high Fe content.		3) LP mutants with good grain quality to be			
				selected for other agronomic traits by			
				conventional pedigree selection.			
	Low Amylose and Low Protein in Rice						
		1) Induce mutation in the varieties KDML105 (low	1) Development of Glu A-I and Glu B-1 antibodies through	M3 mutants with low glutelin and low amylose	1) M4 mutants with low glutelin and		
	1) Compositional analysis of Glu A and Glu B in rice	amylose) and CNT1 (high amylose) sing gamma ray	recombinant protein expression system as described by	will be selected for desire agronomic traits by	amylase will be further selected for desire		
	genetic stock (Thai local varieties) using	irradiation.	Tanaka (2004)	pedigree selection mean. Low glutelin and low	agronomic traits.		
	conventional screening techniques (SDS-PAGE).	2) Mutants screening for storage protein)low glutelin)	2) Develop simple screening technique using glutelin	amylase still be maintained using screening	2) M5 seeds will be derived and analysed for		
	2) Chemical analysis for amylose content of the	and low amylose content using conventional technique.	antibodies for large-scale screening and breeding effort.	technique previously developed.	other desire grain qualities eg. aroma,		
	individuals with low glutelin.	3) Identification of glutelin by SDS-PAGE with	3) Low glutelin and low amylose mutants (M2 plants) will		cooking quality and will be tested for		
	3) Data compilation for amylose content and protein	Coomassie Blue staining and PCR in low glutelin	be selected.		disease and insect resistance.		
	library.	mutants.					
Viet Nam	1) Promising pure mutant lines at M8-M10 (2-5)	1) Promising Crossing lines (3-5) at M3-4F5-6 purified	1) Promising Crossing lines at large scales would be	1) Development of new 2-3 varieties (mutant	National Promotion for upland 2-3 pure		
	obtained from aromatic rice cultivars in Vietnam	and released at large scales in Soctrang province in	released for field trials and National Promotion for 2-3 pure	and/or combined with crossing) for export	mutant lines with high yield and quality for		
	such as Tam Aromatic and Basmati 370, namely	Mekong Delta	mutant lines (>1000 ha)	quality:	highland regions in Vietnam (>1000 ha)		
	BDS1 and TL4, TDS3, Red ST3, have been	2) Regional acceptance > 500 ha (2-4 lines of rice with	2) Quality Examinations of Mutant Lines tested under	Amylose content 16-22%	2) National Promotion for 3-5 new varieties		
	released for breeding program (long grain rice (>7.5	high yield, quality, long grain), and National	National Program	Protein content 9-11%	of rice for Export Rice Program of million		
	mm in length) with high yield (>5.5 t/ha/crop).	Nominations.			ha, and Development of molecular markers		
	2) Quality certificate has been done for 3 lines				for genes for rice quality (aroma and length		
	mentioned above to confirm their promising grain				of grain,)		
	quality to meet the export demands.						
	3) Molecular Examinations of Mutant Lines have						
	been carried out in Molecular Lab. supported by						
	IAEA/TC VIE 5/015 (in Center for Nuclear						
	Techniques, HoChiMinh City).						