Annex 4 Q&A Sheet

FNCA MB Workshop Question & Answer Sheet

Reporter / Answerer	Question / Comment	Answer / Response				
Bangladesh	1) Thank you for the nice presentation! In	1) Thanks a lot Mr. Aurigue for your kind				
(Dr. Mamun)	Slide 7, do the leaves of the mutant lines	observation. In slide 7 you are right due to				
	vary from one another or was it due to	light duration color looks different. Another				
	difference in lighting during photography? In	on slide 6 left side you can see the control				
	Slide 9, the color of the grains are distinctly	plants photographs, Mutants are earlier in				
	different from one another. Is there no	case of flowering and maturity. Thanks.				
	picture of the control or untreated seedlings					
	in the plot?					
	(from Mr. Aurigue, PHL)					
China	1) I am just wondering whether tissue	1) Yes, tissue culture and transformation				
(Prof. Shu)	culture process in genome editing and/or	could induce genomic variations. For				
	doubled haploid production may induce	genome edited plants, we had assessed the				
	certain amount of somaclonal variation. I	mutation frequency by sequencing 5				
	hope it is a negligible level, but do you have	genomes of regenerated plants and came to				
	any data on this point?	the conclusion that Agrobacterium-mediated				
	(from Dr. Hase, JPN)	transformation (for genome editing) induced				
	2) Congratulations on your	mutations at frequencies similar to routine				
	accomplishments particularly the numerous	tissue culture (Li et al 2016, Zhejiang Univ-				
	publications that are useful in mutation	Sci B (Biomed & Biotechnol) 2016				
	breeding! I look forward for more relevant	17(12):992-996. For anther culture, we				
	documentation of your works.	believe the tissue culture process could also				
	(from Mr. Aurigue, PHL)	generate somaclonal variation, though we				
		have not quantified this kind of variation.				
		However, we did observe variations, such as				
		male sterile plants, in a DH2 population,				
		which suggest the existence of somaclonal				
		variation.				
		2) Many thanks				
Indonesia	1) What is the major determinant of high	1) High yielding in Kemuning 1 and 2 was				
(Dr. Sobrizal)	yielding in "KEMUNING 1&2"?	determined by combination of number of pod				
	- No. of seed pod per plant	per plant and grain size, which were higher				
	- Grain size	than their parent and checks. In addition,				
	- Biotic/abiotic tolerance	Kemuning 1 and 2 were developed to				

	- or others?	drought stress tolerance so both are suitable				
	(from Dr. Hase, JPN)	for drought prone area.				
	2) What kind of situation is "shade tolerant"?	2) The study of shade tolerance is carried				
	(from Mr. Takahashi, JPN)	out under 50% of light intensity which is				
	3) Congratulations for developing new	measured by lux meter.				
	mutant varieties of soybeans! May I know if	3) Thank you! The parent of Kemuning 1 and				
	there is any drought-tolerant variety used as	2 doesn't exhibit drought-tolerance. We				
	control or check for Kemuning 1 and	used drought-tolerant variety as a check and				
	Kemuning 2? Does the parent, Pandermen,	the result showed both Kemuning 1 and 2				
	exhibit drought tolerance? Also, I wanted to	showed better performance than the check.				
	confirm if Sugentan 1 and Sugentan 2,	We didn't do drought-stress test for				
	which mature very early, are NOT drought-	Sugentan 1 and 2, so we cannot confirm				
	tolerant. Thank you for your replies!	about that.				
	(from Mr. Aurigue, PHL)					
Japan	1) This is my first experience to join FNCA	1) Thank you for your interest to use ion				
(Dr. Hase)	meeting and I am very happy to have this	beams. You can do so if the purpose is in line				
	opportunity and know about the progress of	with the FNCA project and also the PL (Dr.				
	several Asian countries in the use of nuclear	Sobrizal) agrees to use. Probably, I can				
	in plant breeding.	provide a beam time for the FNCA project in				
	I am interested to join in the use of ion	April or May 2021. Details will be announced				
	beams for mutation breeding, especially for	in February. Please note that the beam time				
	soybean mutation, which was mentioned by	is limited, and therefore, I may not be				
	Dr. Hase. How can I include genetic material	possible to irradiate all the seeds. You need				
	in this program?	to obtain phytosanitary certificate from the				
	(from Dr. Puspitasari, IDN)	competent authorities of your country to				
	2) Dr. Hase, have you published any of the	export soybean seeds to JPN. I have				
	reports that you presented in our previous	irradiated soybean seeds from Vietnam in				
	FNCA Meeting Workshop? I will appreciate	the last two years. Information from Dr. Thao				
	it very much if you could provide us the	will be helpful to determine proper dose.				
	details of any publication or the link for an e-	2) Thank you for your interest in our work,				
	сору.	Mr. Aurigue. Here is the link for my recent				
	(from Mr. Aurigue, PHL)	publications that I talked at the workshop.				
		https://www.frontiersin.org/articles/10.3389/f				
		<u>pls.2020.00336/full</u>				
		https://www.nature.com/articles/s41598-				
		<u>018-19278-1</u>				
		https://academic.oup.com/jrr/article/61/5/63				

		<u>9/5881841</u>				
Korea	1) In one of your slides it was mentioned	1) A new variety with high function means				
(Dr. Kang)	that developing a new variety with high	that it contains a lot of functional				
	function such as rice, can you explain what	compounds, and the type of target				
	is meant by high function on what character	compounds varies depending on the crop.				
	/ trait you want to develop?	Main functional compounds in recently				
	2) For the commercialization of this new	developed rice were tocopherol, amino acids				
	mutated variety, what approach do you use	and pigments, etc.				
	so that it can be accepted quickly by farmers	2) New mutant varieties of rice and				
	and the community?	soybeans, which are officially registered, are				
	3) For functional genomics and	usually propagated by ourselves and then				
	metabolomics study, in what generation of	distributed directly to farmers. Other crop				
	your mutant population was this approach /	seeds and technology developed by our				
	study carried out?	research team have been transferred to the				
	(1)-3) from Dr. Dewi, IDN)	industry sector.				
	4) Do you have any plans to use phenomics	3) We have been mainly conducted				
	in mutant screening? I think it is a big	genomics and metabolomics analysis to				
	challenge but if it works, we could find new	selected mutants or population in M2~M6				
	mutants that cannot be identified by	generation.				
	conventional methods.	4) I think that the KAERI research team will				
	(from Dr. Hase, JPN)	be working on setting the conditions for the				
	5) Dr. Kang, do you have any publication	meantime. I hope to see much progress in				
	about the mutant varieties of ornamental	this research in the future.				
	plants? They are all very interesting and I	5) We published some papers about				
	would like to know more about the details.	mutation breeding in ornamental or				
	Thank you!	horticultural plants already. If you search my				
	(from Mr. Aurigue, PHL)	name or keyword, you can easily find it.				
Malaysia	1) Do you have a mutation breeding	1) Yes we have. Basically, the mutation				
(Dr. Hussein)	program to improve local rice varieties in	breeding program is automatically				
	Malaysia to support food self-sufficiency in	generated when local verification trials (LVT)				
	the region, given that local rice has specific	are conducted in collaboration with the				
	characters, especially taste and aroma,	industry players. Once rice mutant shows				
	which is maintained and developed by	significant increase in yield, the farmers				
	farmers in the area?	would request to be part of the mutation				
	2) Are there any difficulties in propagating	breeding project. Subsequently, the best				
	different types of mutant varieties so that	mutant variety is maintained and developed				
	they can be distributed to farmers?	by the industry players.				

	(1)-2) from Dr. Dewi, IDN)	2) Propagating different type of mutant is not				
	3) Sorry to ask about such minor details, but	the major problem because it can be done				
	what the graph on the right side in your slide	through research collaboration with the				
	#13 represents? In that, NMR152 and	industry players. The major problem is the				
	NMR122 show the value of 134 and 122,	requirement to seek for approval from the				
	respectively.	national technical committee before the rice				
	(from Dr. Hase, JPN)	variety is allowed to be distributed to the				
	4) Nuklear Malaysia truly deserves the	farmers. Moreover, the approval process is				
	FNCA Award because of the	tedious and time consuming.				
	accomplishments that have high impact to	3) The graph shows in slide no 13 is the SSR				
	farmers and to Malaysian economy. At the	fragment analysis to differentiate between				
	same time, you are able to promote	the parent and NMR152. 134 refers to the				
	mutation breeding technology through your	SSR analysis for NMR152 while 122 refers				
	publications, Farmers' Field Day, and press	to the SSR analysis on the parent (MR219)				
	releases. Congratulations! What is also very	control.				
	good about the mutants is that it helps	4) First and foremost, thank you to Mr.				
	protect the environment and the health of	Aurigue for the compliments and showing				
	people due to minimal use of chemicals	great appreciation towards the output of				
	against pests and diseases.	Nuclear Malaysia mutation breeding project.				
	(from Mr. Aurigue, PHL)	Nuclear Malaysia would also like to express				
		utmost gratitude to FNCA for the great				
		support.				
Mongolia	1) In Slide 12, the mutant lines of wheat	1) Thank you for question. Standard wheat				
(Dr. Noov)	were classified as early maturity (81 and 83	maturity groups in Mongolia are: early				
	days), medium maturity (86 and 87 days),	maturity 80-84 days, medium maturity 85-90				
	and late maturity (92 days). Please clarify	days, and late maturity over 91 days. The				
	your mutation breeding objective stated in	slide 4 illustrates our overall objective to				
	Slide 4 that short vegetation period is 80 to	reduce maturity days in all maturity groups.				
	100 days. Why is 92 days considered	For example early maturity not more than 80				
	already late maturing when it still falls under	days, late maturing lines less than 100 days.				
	short vegetation period? Thank you!	But, we understand that expression in slide				
	(from Mr. Aurigue, PHL)	4 was not clear to explain above objective.				
The	1) Based on your framework, what are your	1) Selection criteria is acceptable phenotype				
Philippines	considerations for screening abiotic stress	(good plant architecture, stature, early				
(Mr. Cabusora)	in the M4 generation?	maturing, exserted panicle, etc.) at the M2				
	(from Dr. Dewi, IDN)	population. Since our wildtypes are abiotic				
	2) Do you see any difference between the	tolerant landraces with poor phenotypes.				

	mutant population generated by seed	The advancement to two more generations				
	irradiation and in vitro mutagenesis.	(up to M4) is done only to evaluate the				
	including unfavorable phenotype?	uniformity of the lines and the stability of the				
	(from Dr. Hase, JPN)	mutation. We need to be sure that the				
	(mutation is stable (genetic) and that the lines				
		will not revert back to its original phenotype				
		(epigenetic) on the next generations So				
		basically the screening for stresses is to				
		select mutants with good phenotype and				
		retained abiotic stress tolerance.				
		2) Actually no Sir We don't observe any				
		difference in terms of variability induction				
		The only advantage of using IVM is that at a				
		small population variability is high and we				
		were able to select best lines (higher				
		efficiency). Unlike in seed mutation we need				
		thousands of M2 only to have small				
		selection efficiency.				
		Thank you for the questions, Dr. Hase. If				
		may I request your email address. I would				
		like to consult some matters regarding one				
		of our mutant exhibiting novel floral mutation				
		different from those already published.				
		Thank you.				
Thailand	1) Thank you for joining the workshop. It	1) Hello Dr. Hase. Yes, of course. Next time,				
(Mr. Noenplab)	was nice to meet you and I am looking	we will talk about flood tolerant and drought				
	forward to hear your research work more in	tolerant elite lines developed from mutation				
	detail next time.	breeding in our pipeline. Thank you for				
	(from Dr. Hase, JPN)	hosting the event.				
Vietnam	1) How to use brown and black soybean?	1) Thank you for the question. In Vietnam				
(Dr. Le)	(from Mr. Takahashi, JPN)	previously only yellow soybeans were used				
	2) The results of gamma irradiation on	for food. Black soybean DT215 is the first				
	peanut are very good and interesting.	black soybean variety created and planted in				
	However, could you please ascertain which	Vietnam. DT215 has high levels of omega-3,				
	chlorophyll mutation was observed? From	omega-6, and carotene, suitable for				
	the pictures presented in the slides, it does	processing functional foods. Currently, this				
	not look like an albina (white) at all. You may	variety has been transfer breeder copyright				

want to check if it is actually xantha or	to a food company, which processes bottled			
chlorina because albina hardly survives due	food drinks and soybean cakes rich in			
to lack of chlorophyll. Thank you!	nutritious dini.			
(from Mr. Aurigue, PHL)	2) Thank you for question. In the			
3-1) Responding to Dr. Hase's answer to my	implementation process, not only peanuts			
question, I would like to ask about the	but soybeans are also often obtained albino			
proper dosage for irradiating soybeans	in the M1 and M2 generations. The albino			
using ion beam.	variant can be whole body or partial tree;			
(from Dr. Puspitasari, IDN)	The timing of appearance can be in the			
3-2) Could you share the data on the	seedling or when the plant is mature. So			
survival rate of soybean seeds irradiated on	some plants still grow and collect seeds.			
May 14th, 2019? On that day, I irradiated	These variations are less in M2 and by M3			
soybean seeds with the following doses.	almost disappeared. In the presentation, we			
320 MeV Carbon: 10, 20, 30, 40, 50 Gy	only give examples of the occurrence of			
107 MeV Helium: 20, 40, 60, 80, 100 Gy	mutants without going into further research			
(from Dr. Hase, JPN)	on this mutant type, the main direction for			
3-3) Dr. Thao, thank you for your response.	screening in our mutants peanut breeding is			
Clear dose-response is seen on the survival	to choose varieties with high lipit content.			
rate of M1 seeds.	3-1) It is true that we are having trouble			
Dr. Puspitasari, I think this data is helpful to	determining the dose of ion beam irradiation			
check the radiation sensitivity of your	on soybeans. We are currently evaluating			
materials. Let's think about it again, after	the M3 generation, but the seeds numbers is			
becoming clear that I can hold a beam time	very small. It seems that we determined the			
for this project.	dose too high and the wide distance. So we			
(from Dr. Hase, JPN)	are working to determine the dose closer			
3-4) Dr. Thao and Dr. Hase, thank you very	together in next irradiate to determine the			
much for your cooperation. This is very	optimal dose.			
useful information. We look forward to apply	3-2) Please see table 1 is the data for ion			
it to our genetic materials.	beam on soybean. Thank you for your			
(from Dr. Puspitasari, IDN)	cooperation.			

Table 1

The survival rate of soybean seeds irradiated (%)

1. 320 MeV-C

	8420	08-1	842008-36		F3507-2		F3507-3/1	
	M1	M2	M1	M2	M1	M2	M1	M2
10 Gy	61	87,5	57	86,5	63	83,3	66	87,1
20 Gy	48	86,9	45	88,1	45	86,8	46	85,9
30 Gy	30	88,0	29	87,7	31	87,4	27	86,3
40 Gy	17	87,8	17	86,9	19	87,1	20	85,7
50 Gy	10	87,5	9	87,5	9	87,0	11	87,1
0 Gy		88,1		87,2		87,5		86,4

2. 107 MeV-He

	8420)08-1	842008-36		F3507-2		F3507-3/1	
	M1	M2	M1	M2	M1	M2	M1	M2
20 Gy	67	88,1	69	85,1	67	88,4	66	85,3
40 Gy	60	87,2	57	87,3	58	87,9	58	86,0
60 Gy	47	89,1	48	86,4	46	88,1	48	85,7
80 Gy	31	86,3	30	87,5	33	87,7	41	87,1
100 Gy	20	87,4	22	88,6	19	87,3	21	86,1
0 Gy		87,8		86,3		89,1		85,6