FNCA Mutation Breeding Project

Five Years Plan of Sub-Project on improvement of Composition or Quality in rice (2008ver.)

Country	FY2007	FY2008	FY2009	FY2010	FY2011
Bangladesh		1) Collection of salt tolerant rice	1) Collection of seeds from M_2 plants	1) Raising and evaluation of	1) Raising and evaluation of
		landraces from coastal regions.	and raising of $M_{\rm 3}$ population in the	putative mutants in M_3	mutants in M4 generation in
		2) Determination of protein and	experi- mental field for screening	generation in the saline soil of	the saline soil of coastal
		amylose content in the collected	and selection.	coastal region for high protein,	region.
		landraces.	2) Irradiation of embryogenic calli	high amylose and high yield.	2) Raising of M_3V_3 in the fields
		3) Irradiation of seeds by different	with different doses (20-60 Gy) of	2) Raising and selection of $M_{1}V_{1}$	of saline affected coastal areas
		doses (250-400 Gy) of gamma ray.	gamma rays.	plants in NaCl-free soil to get	for selection.
		4) Raising of M_1 generation in the	3) Maintenance and scree- ning of	M ₂ V ₂ seeds.	3) Evaluation of selected
		experimental field. M2 generations are	calli onto MS/N6 medium added	3) Screening and selection of M_2V_2	plants in the succeeding
		being raised in the field as well as	with 0.5-1.5% NaCl for 120 days	plants for high protein, amylose	generations for protein
		fresh irradiations of Morichshail and	with periodical subculturing.	and yield in pot culture treated	content, amylose content,
		Ashfall were done and M1 are now	4) Regeneration of M_1V_1 plants from	with 0.5-1.5% NaCl under	yield and salinity tolerance.
		being grown in the field.	surviving calli on NaCl-free	greenhouse condition.	
		5) Development of embryogenic calli	medium.		
		from mature seeds.			
		6) Establishment of regeneration			
		system from embryogenic calli. In			
		addition, irradiated seeds of Takshoyl			
		were used to regenerate plants and 19			
		plants have been regenerated from			
		those calli which are now growing in			
		the pot and are now at the booting			
		stage.			

-					
China	1) Harvest M1 generation seed	1) Purification of breeding materials	1) Purification of M4 lines and make	1) Mutant lines with good	1) Possible combinations with
	2) Selection of mutants with good	(M3)	cross with CMS lines and primary	restoring ability crosses with	good heterosis enter field
	plant character from M2 generation.	2) Analysis of amylose content from	evaluation of restoring ability.	more CMS lines for evaluation of	trails
		selected M3 generation to screen M4	2) Growing F1 and F2 generation	heterosis.	2) Selection of (F5 , F6)
		lines with low amylose content	from cross of last yea and select	2) Selection of (F3, F4) lines	lines with good plant
		3) Select good M3 lines with low	good plant with desirable agronomic	with good plant character and	character.
		amylose content to cross with the	traits.	primary analysis of amylose	3) Amylose content analysis
		other varieties with good quality		content in F4 generation to	for selection of LAC lines ,
				preserve potential combinations	after then, make cross
					between selected LAC lines
					and CMS lines in 2011 and
					evaluation of restoring
					ability and heterosis in 2012
					and 2013.
Indonesia	1. Construction of breeding	Purification of breeding materials	1) Multiplication of seeds of pure	1) Screening the lines for amylase	1) Breeding for high yielding
	materials cross between elite	(M3, M4).	lines (M5 lines)	contents (Cont.)	and grain qualities of rice
	indica varieties (IR36, IR64, Diah	Selection of early maturity and dwarf	2) Screening the lines for amylose	2) Breeding for high yielding and	varieties using selected lines
	Suci) and unique japonica	stature.	contents and other characters	grain qualities of rice varieties	(Cont.)
	varieties (Pandan Wangi, Rojolele,		related to grain quality.	using selected lines	2) Writing final report
	Koshihikari)				
	2. Development of M2 of KI 237 and				
	KI 432.				
Korea	Color rice				
	1) Collection of breeding materials	1) Culturing M3 plants and selection	M4-5 generation field trial, analyses	Selection of promising lines	Local adaptability trials and
	from foreign and native rice	of useful mutants	of functional compounds and related		registration
	germplasm	2) Analysis of functional compounds:	molecular markers, and selection		
	2) Irradiation of radiation	Anthocyanin,			
	(acute/chronic, gamma, ion beam)	Chrisanthemin (C3G; cyanidin			
	3) Harvesting M2 seeds	3-glucoside), tocoperol, etc.			

	Amylose library				
	1) Ilpumbyeo: irradiation of gamma	Culturing M2 plants and selection of	1) Culturing M3 mutant generation	Characterization and line	1) Construction of mutant
	ray with 250 dose	amylose mutants after analysis of	and reselection after analysis and	selection	library with various amylose
	2) Harvested M2 seed	amylose content and seed morphology	characterization		contents
			2) Molecular analysis using amylose		2) Selection of promising
			mutants		mutant lines for new variety
Japan	1) Research method :	1) Research method :	1) Research method :	1) Research method :	1) Research method :
	Use existing amylose variants	Use mutagens such as gamma-rays	Use mutagens such as gamma-rays	Use mutagens such as	Evaluate amylose library
	2)Research Object :	and ion beams	and ion beams	gamma-rays and ion beams	under various cultivation
	Raise Koshihikari NILs relating to	2) Research Object :	2) Research Object :	2) Research Object :	conditions
	amylose	Screen amylose variants from primary	Screen amylose variants from	Screen amylose variants from	2) Research Object :
	3)Expected achievements :	varieties	primary varieties	primary varieties	Evaluate amylose library
	Broadened amylose variants	3) Expected achievements :	3) Expected achievements :	3) Expected achievements :	3) Expected achievements :
		Creation of amylose library	Creation of amylose library	Creation of amylose library	Completion of amylose library
Malaysia	Irradiation of seeds of advanced	Line screening of selected mutant	Mutant confirmation in lab	Yield trials of advanced mutant	Adaptability study of selected
	lines of MR 211, MR219, and MR	lines from M3-M4 Laboratory analysis	(PCR-based) and field condition	lines Advance Yield Trial of	mutant line in several location
	256, Q74 with gamma rays	of amylose content and	Evaluating the promising mutants	promising mutant line Quality	of grainy area Local
	(re-irradiation) and ion beams Field	total starch content. Molecular	for high yield and quality traits	evaluation of advanced mutant	varification
	screening of M1-M2 populations	screening with specific	(M5-	lines for Milling quality,	Test/Regional trial at Farmer
	•At present 38 lines from M4 of	microsatelitemarker	M6) To screen potential mutant	physical quality, chemical and	plot Release
	MR211 (300 and 400Gy) and MR219	• Planting and 15,000 M1 seeds of	lines of MR 211, MR219, and MR $$	sensory	
	(300 and 400Gy) were selected for	MR211 and MR219 (advanced lines)	256,		
	further testing.	using 300Gy and 400Gy and harvest of	Q74 with low amylase and total		
	Conducted preliminary analysis	M2 seeds	starch content. Starch profiling		
	for amylase content	• Preliminary laboratory test for	using		
	• Conducted molecular screening for	drought resistance using PEG	molecular techniques.		
	specific markers such as amylase	(Polyethylene Glycol) at 0,12, 20, 30,			
		40 and 50% PEG			

		• Shoot elongation was inhibited at 40			
		and 50% PEG			
		• Greenhouse screening for minimal			
		water requirement was conducted			
		using MR211 (300 and 400Gy) and			
		MR219 (300 and 400Gy)			
		• From 500 lines tested, 55 lines			
		from M3 of MR211 (300 and 400Gy)			
		and MR219 (300 and 400Gy) were			
		selected based on average seed weight			
The	1) Irradiation of seeds	1) Identification of mutants in the M_2	1) Selection of mutants with	1) Multiplication of desirable	Submission of desirable
Philippines	2) Determination of radiosensitivity	generation	improved grain quality in the M_4 nd	mutants	mutants with improved grain
	to gamma radiation	2) Planting M3 generation	later generations	2) Determination of amylose and	quality to the National Seed
	3) Growing of M1 generation	3) Selection and Determination of	2) Determination of amylose and	protein content of selected	Industry Council for
	4) Planting of Httthe M2 generation	amylose and protein content and other	protein content of selected mutants	mutants	registration
		grain quality a <i>t</i> tributes.			
Thailand	Low Phytate in Rice				
	1) Genetics studies of Low phytic	1) Yield, Fe content and other	1) Continue yield, Fe content and	1) Study on G x E and stability in	1) LP mutant derived from
	acid mutants derived from M6 of	agronomic traits evaluation of derived	other agronomic traits evaluation of	term of Fe content in advance LP	SPR1 cultivar with high Fe
	irradiated variety SPR1), RD23,	LP mutant lines.	derived LP mutant lines.	mutant lines performed good	bioavailability and acceptable
	2) Generation of Mapping	2) LP molecular marker developing.	2) Screening for Low Phytate	agronomic characters and	cooking quality will be
	population for Low Phytate (LP)	3) Developing simplified protocol of	mutants combined with good grain	acceptable grain yield.	recommended.
	traits.	breeding screening technique for high	quality (eg. Low amylase, aroma)	2) Analysis of Fe content and	2) LP mutants with good grain
	3) Analysis of genes involved in	Fe content.	from newly generated population	cooking quality of elite LP	quality to be continue selected
	phytic acid biosynthesis of the	4) Generate new mutant populations	using MAS.	mutants.	in further breeding program.
	generated population.	(using LP mutants as parents) for high		3) LP mutants with good grain	
	Achievement: F2 progenies of a	Fe content.		quality to be selected for other	
	cross between M6 mutant with Wild			agronomic traits by conventional	
	type were obtained to study genetic			pedigree selection.	

	mapping of <i>lpa1</i>					
	Low Amylose and Low Protein in Rice					
Γ	•Low Amylose and Low Protein in	Additional work :	1) Development of Glu A-I and Glu	M3 mutants with low glutelin and	1) M4 mutants with low	
	Rice	1) Developed a simplified method for	B-1 antibodies through recombinant	low amylose will be selected for	glutelin and amylase will be	
	1) Compositional analysis of Glu A	amylose content of the variants in	protein expression system as	desire agronomic traits by	further selected for desire	
	and Glu B in rice genetic stock (Thai	early generation and contributed the	described by Tanaka (2004)	pedigree selection mean. Low	agronomic traits.	
	local varieties) using conventional	other participated members.	2) Develop simple screening	glutelin and low amylase still be	2) M5 seeds will be derived	
	screening techniques (SDS-PAGE).	2) Seed multiplication of IR64 and	technique using glutelin antibodies	maintained using screening	and analysed for other desire	
	2) Chemical analysis for amylose	Koshihikari.	for large-scale screening and	technique previously developed.	grain qualities eg. aroma,	
	content of the individuals with low	3) Induce mutation in the varieties	breeding effort.		cooking quality and will be	
	glutelin.	KDML105 (low amylose) , CNT1,	3) Low glutelin and low amylose		tested for disease and insect	
	3) Data compilation for amylose	CNT80 and SPR1 (high amylose)	mutants (M2 plants) will be		resistance.	
	content and protein library.	using gamma ray irradiation.	selected.			
	Achievement: setting a protocol and	Achievement: already done and M2				
	laboratory equipments.	progenies were obtained.				
		4) Mutants screening for storage				
		protein low glutelin and low amylose				
		content using conventional technique.				
		5) Identification of glutelin by				
		SDS-PAGE with Coomassie Blue				
		staining and PCR in low glutelin				
		mutants.				
		Achievement: waiting for low glutelin				
		mutants				

Vietnam	1) Field Trials for Red ST lines for	1) Continue for pure line selections	1) Regional Acceptance of ST Red	1) Pure line selections for Ion
	Yield	for elite lines from ST16, ST19,	lines	Beam Treated Rice cultivars
	- Quality: Amylose, Protein, Direct	ST21 populations for stable	2) Regional Acceptance of ST	2) Pure line selections for LPA
	determinations of aroma components	characters improved for regional	Combined lines and TDS 3.	(Dr. Long)
	- Minerals: Fe, P, Zn, Cr,	acceptance and for large scale	M2 – M3 screening for Ion beam	3) Pure line selections for High
	(particularly high Fe content lines as	productions.	irradiated rice cultivars for	Quality (Dr. Do Khae Thinh)
	new sources of germplasms)	2) Start with Ion Beam irradiation	non-photoperiod sensitive and	
	2) Field Trials for ST combined lines,	to traditional rice cultivars with	semi-warf plant type.	
	particularly following ST16, ST19,	special quality: M1 will be	- Prof.Dr. Nguyen Thi Lang -	
	ST21	conducted in Soctrang Province for	Mekong Delta Rice Research	
	And TDS 3 (an elite mutant line pure	further selections.	Institute, Can tho (Low Phytic	
	from Tamthom traditional cultivar)		Acid and High Quality Rice)	
			- Dr. Do Khac Thinh – Institute of	
			Agricaluture Sciences,	
			HoChiMinh City (High Yield and	
			Quality Rice	